Солнечные батареи для дома: как выбрать лучшие панели

Сегодня солнечные батареи стали реальными источниками альтернативного электроснабжения для частного дома. Они широко представлены на рынке, а использование солнечной мини-электростанции оказывается достаточно выгодным. Такое положение обусловлено постоянным ростом производства солнечных панелей и дополнительного оборудования, снижением цен на элементы системы и, как следствие, стоимости генерации.

Принцип работы солнечной батареи

Любая солнечная батарея представляет собой фотоэлектрический преобразователь, использующий для получения электрической энергии световую. Практическую ценность в настоящее время имеет фотоэлектрический эффект в полупроводниковых материалах.

Эффект основан на появлении в неоднородных полупроводниковых структурах свободных носителей электрического заряда при воздействии фотонов света. Он наблюдается в различных полупроводниках – на основе кремния, арсенида галлия, теллурида кадмия, крупных молекул полимеров.

За счет появления свободных носителей, энергии которых недостаточно для преодоления запрещенной зоны образуется разница потенциалов (напряжение) между электродами элемента. При подключении внешних цепей между ними возникает электрический ток.

Схема работы солнечных батарей

Схема работы солнечных батарей

Фотоэлементы на базе различных полупроводников преобразуют в электрическую энергию различные части солнечного спектра Так, кристаллические кремниевые модули захватывают до 80% излучения со смещением в красную сторону, пленочные элементы на основе аморфного кремния могут работать и в инфракрасном диапазоне, диоксид титана поглощает фиолетовые и ультрафиолетовые лучи.

Мнение эксперта
Гребнев Вадим Савельевич
Монтажник отопительных систем
Теоретически в часть поглощенного солнечного излучения может быть преобразована в электрическую энергию, однако на практике пока удалось добиться КПД преобразования порядка 15-25% для элементов серийного производства.

В некоторых лабораторных образцах исследователи вплотную подошли к 50%-й отметке. При получении таких же результатов в промышленном производстве стоимость генерации может снизиться более чем вдвое, по сравнению с современным уровнем.

Виды солнечных батарей

Основной признак классификации солнечных модулей – используемые при изготовлении полупроводниковые материалы. Сегодня более 80% занимают солнечные панели на основе кремния. Именно эти типы получили максимально широкое коммерческое применение, их предлагает подавляющее большинство работающих в отрасли продавцов.

В свою очередь, кремниевые гелиопанели подразделяются на:

Виды кремниевых гелиопанелей

Виды кремниевых гелиопанелей

Монокристаллические кремниевые солнечные элементы

Монокристаллические солнечные батареи представляют собой электрически соединенные элементы, изготовленные из тонких (240 мкм) пластин монокристалла кремния. Оптические оси ориентированы в одном направлении, используется материал высокой (более 99.99%) чистоты. Это обеспечивает максимальную эффективность преобразования. При теоретически возможном для кремниевого элемента КПД 30% у серийных образцов показатель достигает 18-24%.

Внешне монокристаллические батареи легко отличить – они имеют глубокий черный цвет, элементу в процессе порезки придается форма правильного квадрата (прямоугольника) со срезанными углами.

Технологий производства таких солнечных батарей – рекордсмен по стоимости среди кремниевых элементов. Высокая цена производства объясняется сложными процессами очистки сырья, выращивания монокристалла и его точной порезки.

В результате монокристаллические батареи имеют самую высокую цену – порядка 0.9-1.1 доллара на 1 Вт мощности.

Есть у таких элементов и другой серьезный недостаток – из-за точной ориентировки оптических осей кристаллов, оптимальную отдачу можно получить только при падении солнечных лучей перпендикулярно плоскости элемента. При существенном изменении угла освещения, а также в рассеянном свете наблюдается резкое снижение генерации.

Поликристаллические кремниевые элементы

Поликристаллические кремниевые элементы

Поликристаллические кремниевые элементы

В поликристаллических батареях элемент включает множество кристаллов с хаотической ориентацией оптических осей. Для их производства не требуется сырье с высокой степенью очистки – могут использоваться вторичные источники (в частности, переработанные кремниевые батареи), отходы металлургического производства.

В результате стоимость изготовления значительно снижается. Однако при этом уменьшается и эффективность преобразования – лучшие образцы демонстрируют эффективность на уровне 15-18%.

Мнение эксперта
Гребнев Вадим Савельевич
Монтажник отопительных систем
Такие показатели позволили потеснить на рынке монокристаллические панели. В настоящее время на долю поликристаллов приходится более 53% продаж кремниевых батарей, против немногим более 30% у монокристаллических.

Внешне поликристаллические представляют собой правильной формы прямоугольные пластины насыщенного синего цвета. Стоимость генерации «синих» панелей составляет около 0.7-0.9: за 1 Вт. При этом они демонстрируют значительно меньшее снижение при рассеянном освещении и падении света под углами, отличными от 90 градусов.

Аморфные кремниевые батареи

Изготавливаются из аморфного (некристаллического) кремния a-Si, путем осаждения на гибкую подложку паров гидрида кремния. В результате образуется добиться стабильного фотоэлектрического эффекта получается уже при толщине пленки в несколько микрон.

Технологический процесс значительно удешевляется за счет минимального количества требующегося кремниевого сырья, сниженных требований к его чистоте, отсутствию сложных операций, таких как выращивание кристалла и его порезка.

Эффективность преобразования составляет порядка 8-11%, стоимость генерации лежит в пределах 0.5-0.7% за 1 Вт. Главный недостаток таких батарей – низкий КПД преобразования, что требует значительной площади для обеспечения необходимой мощности. Однако он с лихвой компенсируется возможностью установки на любые поверхности – гибкая подложка не требует ровных оснований и специальных конструкций для монтажа.

Кроме того, современные полиморфные модули могут работать с инфракрасным диапазоном, что существенно уменьшает потери эффективности при рассеянном освещении. В результате на долю аморфных элементов сегодня приходится порядка 10% мирового рынка.

Тонкопленочные CdTe батареи

Тонкопленочные CdTe батареи

Тонкопленочные CdTe батареи

Солнечные батареи на основе теллурида кадмия (CdTe) могут стать реальной альтернативой кремниевым элементам. В настоящее время они демонстрируют эффективность преобразования, в среднем, на 20% выше аналогичных аморфных кремниевых при стоимости на 20% ниже. Достигается это за счет уникальных характеристик полупроводника, обеспечивающую оптимальную ширину запрещенной зоны.

Изготавливаются такие панели путем нанесения слоя полупроводникового материала на тонкие пленки. Технология пока доступна ограниченному кругу производителей, однако серийный выпуск таких батарей уже налажен американской компанией First Solar.

Полимерные солнечные панели

В полимерных солнечных модулях фотоэффект обеспечивает слой «полимерного полупроводника» – больших молекул органических соединений. В настоящее время технология таких изделий близка к развертыванию крупномасштабного производства (некоторые европейские компании уже наладили коммерческий выпуск).

Полимерные солнечные панели

Полимерные солнечные панели

По оценкам эффективность преобразования таких устройств лежит в пределах 8-11%. За счет рекордно дешевого производства, использования гибких полимерных материалов, отсутствия проблем с утилизацией, в ближайшей перспективе полимерные гелиомодули смогут составить серьезную конкуренцию уже выпускающимся изделиям.

Производителями также ведутся активные разработки солнечных панелей на основе:

  • арсенида галлия, селенидов меди-индия-галлия (CGIS);
  • гибридных технологий, в которых несколько полупроводниковых элементов на разной основе работают в разных частях солнечного спектра;

  • фотосенсибилизированных ячеек, с колбами Гретцеля в качестве рабочего элемента;
  • наноантенн, в которых солнечный свет как электромагнитное излучение индуцирует ЭДС и др.

Мнение эксперта
Гребнев Вадим Савельевич
Монтажник отопительных систем
Многие из них демонстрируют КПД преобразования выше современных серийных панелей (например, полупроводники вплотную подошли к 50%-му рубежу, а эффективность наноантенн оценивается выше 80%), но пока эти варианты находятся на уровне лабораторных образцов и не могут заинтересовать реального пользователя.

Выбор солнечных батарей

При выборе солнечных батарей необходимо определить не только тип, но и электрические параметры – мощность и напряжение.

Тип

Выбирают тип солнечной панели из условий инсоляции (количества солнечных дней, интенсивности излучения):

  • Так, монокристаллические кремниевые батареи вполне подойдут для установки в южных регионах.
  • В Средней полосе и на других российских территориях оптимальным вариантом будут поликристаллические панели, хорошо зарекомендовавшие себя в условиях рассеянного освещения.
  • В северных широтах следует обратить более пристальное внимание на аморфные модули, которые позволяют создать значительную площадь батареи без дополнительных монтажных работ.

Внимания требует и категория качества. В маркировке батарей этот параметр указывается как Grade A, B или C. При прочих равных следует отдать предпочтение изделиям Grade A – они прослужат 20-30 лет при незначительной (не более 20%) деградации.

Более низкие категории качества присваиваются продукции по итогам заводских испытаний, которые выявляют отклонение от номинальных параметров не более 5% (Grade B) и 30% (Grade C) в процессе эксплуатации.

Мощность и напряжение

Мощность панелей определяют следующим образом:

  • Важно определить необходимую мощностьРассчитывают среднюю суммарную мощность потребления (по показателям электросчетчика, счетам за электроэнергию). Для среднедневного потребления показатели за месяц делят на количество дней.
  • К полученному результату добавляют 20-30%, чтобы получить запас с учетом КД преобразования (потерь на заряд аккумуляторов и работу инвертора).
  • По полученным данным рассчитывают выходную мощность панелей с учетом длительности светового дня. Для расчетов она принимается равной 6 ч, соответственно мощность батареи должна превосходить среднее потребление в 4 раза.
  • Выбирают напряжение панели. Как правило, производители предлагают батареи с выходным напряжением 12В. Однако для заряда накопителей и повышения КПД преобразования постоянного напряжения переменное на инверторе (особенно при большой мощности), выгоднее иметь более высокие значения.
    Стандартно используют:

    • 12 В для систем для мощностей до 1 кВт.
    • 24 В или 36 В – до 5 кВт.
    • 48 В – более 5 кВт.

Такие напряжения получают последовательным соединением панелей.

  • Определяют пиковую мощность, для чего суммируют мощности всех потребителей в доме.
  • Определяют пиковую мощность с запасом 10-20%, например, на пусковые токи электродвигателей и работу нагревательных элементов системы ГВС, стиральной и посудомоечной машин и т.д.
  • По пиковой мощности определяют максимальный ток панелей.
  • В справочниках находят коэффициент инсоляции (в летнее и зимнее время) для местности.

Для дальнейших расчетов следует воспользоваться формулой:

Обратите внимание на характеристики заявленные производителемP = Kc * Wn * Ki, учитывающей

  • Кс – сезонный коэффициент, для летнего времени принимается равным 0.5, для зимнего – 0.7;
  • Ki – коэффициент инсоляции, для летнего и зимнего времени;
  • Wn – номинальную мощность панели.

Выбрав в каталогах производителей несколько моделей батарей для каждой из них рассчитывают мощность генерации в зимнее и летнее время.

Затем определяют необходимое количество панелей, разделив рассчитанную выше среднюю мощность потребления (с запасом) на мощность генерации. Вычисления ведут для зимнего и летнего периода, в качестве итога принимают большее значение.

Мнение эксперта
Гребнев Вадим Савельевич
Монтажник отопительных систем
Округления ведут до большего целого числа. При напряжениях более 12 В округляют до чисел кратных 2 для систем с питание 24В, 3 для 36В и 4 для 48 В.

После расчетов проверяют:

  • Максимальную токовую нагрузку на панели по пиковому потреблению. Если максимальный ток больше, чем обеспечивают соединенные параллельно батареи, следует выбрать более мощные.
  • Бюджет. Определяют общую стоимость панелей и сравнивают с выделенной на их покупку суммой.

  • Площадь. Рассчитывают суммарную площадь панелей и сравнивают с площадью отведенного для установки места. Если пространства не хватает – ведут пересчет для более мощных батарей.

Монтаж солнечных батарей

К установке солнечных батарей не применяется жестких требований. Смонтировать гелиоприемник можно под наклоном, на вертикальной или горизонтальной поверхности. При этом жесткие панели (моно- и поликристаллические) устанавливают на жесткий каркас, фиксируют в местах крепления при помощи комплектного крепежа. Батареи на эластичной подложке допускают укладку на неровные поверхности (например, волнистую крышу).

Соединения между панелями осуществляют многожильными проводниками с оконцевателями. Сечение токоведущих элементов рассчитывают по величине номинального и максимального тока.

При выборе места и угла установки следует учитывать основное условие максимальной генерации – падение солнечных лучей перпендикулярно плоскости батареи.

Этого можно достичь:

  • Ориентировкой модулей в южном направлении.
  • Размещением их под углом, равным географической широте местности.

  • Изменением угла наклона в пределах +/- 20% соответственно в зимний и летний период.

Кроме того, для монокристаллических панелей критически важно позаботиться об отсутствии затенения – при рассеянном свете их эффективность сильно падает.

Часто спрашивают

Солнечные батареи во время эксплуатации деградируют. На какой промежуток времени они рассчитаны?

Батареи класса качества А (GradeA), как правило, получают гарантию на 15-25 лет. За это время снижение показателей от номинальных не превышает 20%.

Как можно добиться стабильной отдачи от монокристаллических панелей в Средней полосе?

Инсоляция в этих регионах не способствует эффективной работе монокристаллических батарей. Несколько улучшить положение можно за счет поворотных устройств слежения за светилом, но их реализация существенно удорожает установку в целом.

Обязательно ли чистить/мыть панели?

Не обязательно, большинство производителей говорят, что для нормальной работы достаточно природных осадков, смывающих пыль. Однако несколько раз в сезон обдать водой из шланга будет не лишним. Конечно же, обязательно убирать снег зимой после снегопадов.

Возможно ли использовать в российских условиях солнечные батареи как единственный источник энергии, или следует дублировать его сетью?

При правильном расчете количества панелей и дополнительного оборудования (аккумуляторов, инвертора) солнечная электростанция вполне справится с электроснабжением дома без дублирующих источников.

На рынке сегодня множество предложений разных компаний. Чьи солнечные батареи покупать?

Большинство мелких производителей используют модули компаний, входящих в ТОП 10. Репутацию же производителя легко проверить на сайте Калифорнийской (https://gosolarcalifornia.org/equipment/pv_modules.php) или Европейской TUV (https://www.tuev-sued.de/industry_and_consumer_products/certificates) лабораторий.

Видео-обзор с расчетами по солнечным панелям



Добавить комментарий

Вам будет интересно